Wallace Hall Academy Physics Department

Advanced Higher Physics

Quanta

Solutions

TUTORIAL 1.0

Quantum Theory

Numerical answers

1. $\pm 1.1 \times 10^{-23} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
2. $\pm 5.65 \times 10^{-9} \mathrm{~m}$
3. $\pm 5.3 \times 10^{-26} \mathrm{~J}$
4. $\pm 1.4 \times 10^{-26} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
5. (a) $1.8 \times 10^{-10} \mathrm{~m}$
(b) $6.1 \times 10^{-14} \mathrm{~m}$
(c) $2.0 \times 10^{-38} \mathrm{~m}$
6. The electron has the larger de Broglie wavelength by 1800 times.
7. (a) $4.7 \times 10^{-13} \mathrm{~m}$
(b) $1.4 \times 10^{-21} \mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-1}$
8. (a) $8.4 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$
(b) $8.7 \times 10^{-11} \mathrm{~m}$
(c) Particle behaviour
9. $2.5 \times 10^{-11} \mathrm{~m}\left(2.46 \times 10^{-11} \mathrm{~m}\right)$
10. 940 V
11. $2.4 \times 10^{-11} \mathrm{~m}(24 \mathrm{pm})$
12. (a) (i) $1.06 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}\left(1.056 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right)$
(ii) $3.2 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}$
(b) Show $2 \pi r=n \lambda$
(c) (i) $6.6 \times 10^{-10} \mathrm{~m}$
(ii) $1.3 \times 10^{-9} \mathrm{~m}$

TUTORIAL 2.0

Particles from space

Numerical answers

1. $\quad 5.0 \times 10^{-13} \mathrm{~N}$
2. $3.8 \times 10^{-15} \mathrm{~N}$
3. A neutron has zero charge: $q=0$
4. (a) $6.1 \times 10^{-16} \mathrm{~N}$ out from page
(b) Zero force, as velocity is parallel to magnetic field.
5. $4.5 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$
6. $1.6 \times 10^{-19} \mathrm{C}$
7. $\quad 9.1 \mathrm{~T}$
8. (a) $2.1 \times 10^{-13} \mathrm{~N}$
(b) This force is a central force at right angles to the direction of motion.
(c) $2.9 \times 10^{-4} \mathrm{~m}$
9. $\quad 0.54 \mathrm{~m}$
10. (a) 45 mm
(b) $2.9 \times 10^{-16} \mathrm{~N}$
11. (a) $2.6 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$
(b) $1.1 \times 10^{-7} \mathrm{~s}$
(c) $2.2 \times 10^{-12} \mathrm{~J}$
12. $1.9 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$
13. 0.61 T
14. $9.56 \times 10^{7} \mathrm{C} \mathrm{kg}^{-1}$; proton, q / m for proton $=9.56 \times 10^{7} \mathrm{C} \mathrm{kg}^{-1}$
15. (a) $v \cos \theta$
(b) $v \sin \theta$
(c) $\quad v \cos \theta$ stays unchanged , as it is parallel to the magnetic field
16. (a) $2.3 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$
(b) $6.4 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$
(c) $2.36 \times 10^{-13} \mathrm{~N}$
(d) $1.6 \times 10^{-4} \mathrm{~m}$
(e) $1.6 \times 10^{-10} \mathrm{~s}$
(f) $3.7 \times 10^{-4} \mathrm{~m}$
17. (a) $4.4 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$
(b) $3.7 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}$
(c) $2.8 \times 10^{-14} \mathrm{~N}$
(d) $8.2 \times 10^{-3} \mathrm{~m}$
(e) $1.4 \times 10^{-7} \mathrm{~s}$
(f) $6.2 \times 10^{-2} \mathrm{~m}$
18. (a) $1.2 \times 10^{-4} \mathrm{~m}$
(b) $5.4 \times 10^{-4} \mathrm{~m}$
