

Advanced Higher Physics

Quanta

Solutions

TUTORIAL 1.0

Quantum Theory

Numerical answers

- 1. $\pm 1.1 \times 10^{-23} \text{ kg m s}^{-1}$
- 2. $\pm 5.65 \times 10^{-9} \text{ m}$
- 3. $\pm 5.3 \times 10^{-26} \text{ J}$
- 4. $\pm 1.4 \times 10^{-26} \text{ kg m s}^{-1}$
- 5. (a) 1.8×10^{-10} m
 - (b) $6.1 \times 10^{-14} \text{ m}$
 - (c) 2.0×10^{-38} m
- 6. The electron has the larger de Broglie wavelength by 1800 times.
- 7. (a) 4.7×10^{-13} m
 - (b) $1.4 \times 10^{-21} \text{ kg m s}^{-1}$
- 8. (a) $8.4 \times 10^6 \,\mathrm{m \ s^{-1}}$
 - (b) $8.7 \times 10^{-11} \text{ m}$
 - (c) Particle behaviour
- 9. $2.5 \times 10^{-11} \text{ m} (2.46 \times 10^{-11} \text{ m})$
- 10. 940 V
- 11. $2.4 \times 10^{-11} \text{ m } (24 \text{ pm})$
- 12. (a) (i) $1.06 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1} (1.056 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1})$
 - (ii) $3.2 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1}$
 - (b) Show $2\pi r = n\lambda$
 - (c) (i) $6.6 \times 10^{-10} \text{ m}$
 - (ii) $1.3 \times 10^{-9} \text{ m}$

TUTORIAL 2.0

Particles from space

Numerical answers

- 1. $5.0 \times 10^{-13} \text{ N}$
- 2. $3.8 \times 10^{-15} \text{ N}$
- 3. A neutron has zero charge: q = 0
- 4. (a) 6.1×10^{-16} N out from page
 - (b) Zero force, as velocity is parallel to magnetic field.
- 5. $4.5 \times 10^6 \text{ m s}^{-1}$
- 6. 1.6×10^{-19} C
- 7. 9.1 T
- 8. (a) $2.1 \times 10^{-13} \text{ N}$
 - (b) This force is a central force at right angles to the direction of motion.
 - (c) 2.9×10^{-4} m
- 9. 0.54 m
- 10. (a) 45 mm
 - (b) $2.9 \times 10^{-16} \text{ N}$
- 11. (a) $2.6 \times 10^7 \text{ m s}^{-1}$
 - (b) $1.1 \times 10^{-7} \text{ s}$
 - (c) $2.2 \times 10^{-12} \text{ J}$
- 12. $1.9 \times 10^6 \text{ m s}^{-1}$
- 13. 0.61 T
- 14. 9.56 × 10⁷ C kg⁻¹; proton, q/m for proton = 9.56 × 10⁷ C kg⁻¹
- 15. (a) $v \cos\theta$
 - (b) $v \sin \theta$
 - (c) $v \cos\theta$ stays unchanged ,as it is parallel to the magnetic field
- 16. (a) $2.3 \times 10^6 \text{ m s}^{-1}$
 - (b) $6.4 \times 10^6 \text{ m s}^{-1}$
 - (c) $2.36 \times 10^{-13} \text{ N}$
 - (d) $1.6 \times 10^{-4} \text{ m}$
 - (e) $1.6 \times 10^{-10} \text{ s}$
 - (f) $3.7 \times 10^{-4} \text{ m}$

- 17. (a) $4.4 \times 10^5 \text{ m s}^{-1}$
 - (b) $3.7 \times 10^5 \text{ m s}^{-1}$
 - (c) $2.8 \times 10^{-14} \text{ N}$
 - (d) $8.2 \times 10^{-3} \text{ m}$
 - (e) 1.4×10^{-7} s
 - (f) $6.2 \times 10^{-2} \text{ m}$
- 18. (a) $1.2 \times 10^{-4} \text{ m}$
 - (b) $5.4 \times 10^{-4} \text{ m}$