Higher Universe Past Paper Answers

<u>Contents</u>

The Big Bang Theory and The Expanding Universe	pg 2-3
Doppler Effect	pg 3-6
Gravitational Force	pg 7-11
Redshift	pg 12
Special Relativity	pg 12-13
Temperature of Stars	pg 13

Higher Universe Answers

The Big Bang Theory and The Expanding Universe

1. E 2. D 3. C 4. B 5. E

6a)	Description of what Big Bang theory is e.g. The Universe was initially in a hot and very dense state and then rapidly expanded. <i>or</i> The Universe started from a point/singularity and rapidly expanded	(1)
	One supporting factor e.g. abundance of hydrogen/helium Cosmic Microwave Background Radiation/present temperature of Universe Darkness of the sky at night/Olbers' paradox Redshift of <u>galaxies</u>	(1)
6b)	* Show teacher if possible* Answer <u>could</u> include correct information on the speed of light and how it takes time to travel from distance stars and galaxies - so it is old light, showing how stars or galaxies looked years ago. This could then lead into Olbers' paradox and the fact that the night sky isn't completely full of light as light from some distant galaxies still hasn't reached us yet. Or it could relate to the fact that the light observed through a telescope may be redshifted/blueshifted depending on whether or not a galaxy is moving towards/away from Earth. Could look at redshift "z" and the equations that relate to this. Could mention the amount of redshift is based on the speed of distant galaxies, and the further away it is the faster it is travelling away from us: Hubble's Law. Could include a graph sketch of Hubble's Law or the equation $v = H_0 d$, discussing what they show/mean. Could talk about microwave telescopes revealing Cosmic Microwave Background Radiation and how this relates to the origins of the Universe.	(3)
7ai)	$X = 0.016 \text{ (m s}^{-1})$ $Y = 0.024 \text{ (m s}^{-1})$	(1) (1)
7aii)	More distant <u>galaxies</u> are moving <u>away</u> at a greater velocity/have a greater recessional velocity.	(1)
7b)	$z = \frac{\lambda_{observed} - \lambda_{rest}}{\lambda_{rest}}$	(1)
	$z = \frac{667 \times 10^{-9} - 656 \times 10^{-9}}{656 \times 10^{-9}}$	(1)
	z = 0.0168	(1)

8a)	Cosmic Microwave Background Radiation ("CMBR" alone not accepted)	(1) <i>any one</i>
	Olbers' Paradox	
	<i>or</i> Abundance of hydrogen and helium in the Universe	
	or	
	Abundance of light elements in the Universe	
8bi)	age of universe = $\frac{1}{H_0}$	
	age of universe = $\frac{1}{2 \times 10^{-17}}$	(1)
	age of universe = $5 \times 10^{16} s$	
	age of universe = 1.59×10^9 (years)	(1)
	Must have turned final answer correctly into years for second mark.	
8biiA)	Value for H_0 is incorrect/too large/not accurate.	(1) any one
	Incorrect line of best fit drawn.	
	Or	
	The gradient (which is H_0) is too large. or	
	New/more data is available/more accurate (compared to his 1929 data)	
	Not enough data at large distances.	
	<i>Or</i> He varies/decreases as age of the universe increases	
	H_0 is different is <u>not</u> accepted. A comparison of the student's value to the real value from the data sheet is fine as this shows that the student's value is too large.	
8biiB)	The student could draw the (correct) line of <u>best</u> fit	(1) any one
	or Student could use a larger sample/all of the 1929 Hubble data.	
	Student would use current data	
	"draw a different line of best fit" alone is <u>not</u> accepted.	

Doppler Effect

	1. C	2. E	3. E	4. B
5ai)	The Dop	pler Effect		

(1)

5aii)	$f_{o} = f_{s} \left(\frac{v}{v \pm v_{s}} \right)$	(1)
	$f_{o} = 510 \left(\frac{340}{340 - 12}\right)$	(1)
	$f_{o} = 529 \text{ Hz}$	(1)
	It's fine to have written the equation with just the minus symbol in the first line of working. It's always a negative when something noisy is coming towards you.	
5b)	$\Delta f = \frac{2f v_{rbc} \cos \theta}{v}$	
	$286 = \frac{2 \times 3.7 \times 10^6 \times v_{rbc} \times \cos 60}{1540}$	(1)
	$v_{rbc} = 0.119 \text{ m s}^{-1}$	(1)
6a)	$f_{o} = f_{s} \left(\frac{v}{v \pm v_{s}} \right)$	(1)
	$f_{o} = 1020 \ (\frac{340}{340 - 22})$	(1)
	f _o = 1090 Hz (<i>3 significant figures</i>) <i>or</i> 1091 Hz (<i>4 s. f.</i>)	(1)
	It's fine to have written the equation with just the minus symbol in the first line of working.	
6b)	$f_{o} = f_{s} \left(\frac{v}{v \pm v_{s}} \right)$	(1)
	$1107 = 1020 \left(\frac{340}{340 - v_s}\right)$	(1)
	$v_s = 26.7 \text{ m s}^{-1}$	(1)
	It's fine to have written the equation with just the minus symbol in the first line of working.	
7a)	$f_{o} = f_{s} \left(\frac{v}{v \pm v_{s}} \right)$	(1)
	$f_{o} = 200 \left(\frac{340}{340 + 30}\right)$	(1)
	$f_o = 184 \text{ Hz}$	(1)
	It's fine to have written the equation with just the plus symbol in the first line of working. It's always a positive when something noisy is moving away from you.	

7b)	It is moving away as it is redshifted/as the wavelengths appear longer.	(1) (1)
	<i>No attempt to justify means 0 marks, even if you said moving away.</i> " must justify your answer".	
8a)	It is a higher frequency when approaching and a lower frequency after passing.	(1)
8b)	The wavefronts are closer together when approaching and more spaced out when moving away	(1)
	so more wavefronts are observed <u>per second</u> when approaching and less <u>per second</u> when moving away	(1)
	or by diagram	
	$\left \begin{array}{c} & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $	
	(1) (1)	
8c)	$f_{o} = f_{s} \left(\frac{V}{V \pm V_{s}} \right)$	(1)
	$760 = 800 \left(\frac{340}{340 + v_{\rm s}}\right)$	(1)
	$v_s = 17.9 \text{ m s}^{-1}$	(1)
	It's fine to have written the equation with just the plus symbol in the first line of working. The frequency was less, so the train must be moving away, hence why you need to use the plus symbol. If you used minus for any part of the working then you get no marks for this part.	
9ai)	The wavefronts are closer together when approaching the alarm so more wavefronts are observed <u>per second</u> .	(1) (1)
9aii)	$f_{o} = f_{s} \left(\frac{V + V_{o}}{V}\right)$	
	$f_{o} = 1250 \ (\frac{340 + 25}{340})$	(1)
	f _o = 1340 Hz	(1)
	Equation was given - no mark is awarded for this.	
9b)	The distant star is moving away from us	(1)

	as the wavelengths appear longer (so redshifted).	(1)
10a)	$f_{o} = f_{s} \left(\frac{v}{v \pm v_{s}} \right)$	
	$f_{o} = f_{s} \left(\frac{v}{v - v_{s}} \right)$	(1) for minus
	$\frac{f_o}{f_s} = \frac{v}{v - v_s}$	
	$\frac{f_s}{f_o} = \frac{v - v_s}{v}$	flip both sides
	$\frac{f_{s}v}{f_{o}} = v - v_{s}$	(1)
	$\frac{f_{s}v}{f_{o}} + v_{s} = v$	
	$v_{s} = v - \frac{f_{s}v}{f_{o}}$	
	If you managed to get the correct final answer by a different method then 2 marks still awarded. Maybe better to show your teacher your working to make sure you've done it correctly.	
10bi)	$f_{o} = f_{s} \left(\frac{v}{v \pm v_{s}} \right)$	(1)
	$f_{o} = 294 \left(\frac{340}{340 - 28}\right)$	(1)
	f _o = 320 Hz	(1)
10bii)	$f_{o} = f_{s} \left(\frac{v}{v \pm v_{s}} \right)$	(1)
	$f_{o} = 294 \left(\frac{340}{340 + 28}\right)$	(1)
	f _o = 272 Hz	(1)

	Gravitational Force	
	1. B 2. E 3. C 4. A	
5a)	$F = G \frac{m_1 m_2}{r^2}$	(1)
	$F = 6.67 \times 10^{-11} \frac{6.42 \times 10^{23} \times 5.6 \times 10^{3}}{(3.7 \times 10^{6} + 3.39 \times 10^{6})^{2}}$	(1)
	F = 4770 N	(1)
5b)	W = mg	(1)
	$4770 = 5.6 \times 10^3 \times g$	(1)
	$g = 0.852 \text{ N kg}^{-1}$	(1)
	Gravitational force and weight are the same thing. This is important to remember as you'll need to use your F value as W when calculating gravitational field strength. An easy 3 marks if you remember this.	
6a)	$F = G \frac{m_1 m_2}{r^2}$	(1)
	$F = 6.67 \times 10^{-11} \frac{5.97 \times 10^{24} \times 900}{(400 \times 10^3 + 6370 \times 10^3)^2}$	(1)
	F = 7820 N	(1)
6b)	W = mg	(1)
	$7820 = 900 \times g$	(1)
	$g = 8.69 \text{ N kg}^{-1}$	(1)
7a)	When in orbit the people on-board are in <u>constant free-fall</u> towards the planet (so appear to float).	(1)
	Not because there is no gravity. If there was no gravity then the satellite wouldn't stay in orbit around the planet.	
7bi)	$F = G \frac{m_1 m_2}{r^2}$	
	W = mg	(1) both
	W = F	eq.
	$mg = G \frac{m_1 m_2}{r^2}$ $g = G \frac{m_1}{r^2}$	(1) or (2) if you
		started

	ar ²	6
	$m_1 = \frac{g_1}{g_2}$	here
	- G	
	Sometimes rather than using m_1 and m_2 , the symbol for a bigger mass is M and for a	
	smaller mass is m - i.e.	
	$F - C^{Mm}$	
	$r = G \frac{1}{r^2}$	
	This tends to be used in Advanced Higher Physics to distinguish two different mass	
	values.	
/bii)	$m_1 = \frac{gr}{m_1}$	
	G	
	$25 \times (69.9 \times 10^6)^2$	(1)
	$m_1 = \frac{1}{6.67 \times 10^{-11}}$	(1)
		(1)
	$m_1 = 1.83 \times 10^{27} \text{ kg}$	(-)
7ci)	$m_1 m_2$	(1)
- /	$F = G - \frac{r^2}{r^2}$	(1)
	$1.83 \times 10^{27} \times 100$	
	$F = 6.67 \times 10^{-11} \frac{1.03 \times 10^{-100} \times 100^{-100}}{(7 \times 10^{6} + 60.0 \times 10^{6})^{2}}$	(1)
	$(7 \times 10 + 69.9 \times 10)$	
	F = 2060 N	
	Answer given so no mark for this part. As this is a "snow" question you must give	
	the answer exactly as the question asks for it. 2064 N would be incorrect.	
7cii)	distance/circumference = $2\pi r$	
,	distance = $2 \times \pi \times (7 \times 10^6 + 69.9 \times 10^6)$	
	distance = $4.83 \times 10^8 \mathrm{m}$	(1)
		(1)
	u = vL $ A = 2 - v + 10^8 - 40 + 10^3$	(1)
	$+.05 \times 10 = 40 \times 10 \times 10$	(1)
		(1)

		1
10.	$F = G \frac{m_1 m_2}{r^2}$	(1)
	$4.47 \times 10^{-2} = 6.67 \times 10^{-11} \frac{1.31 \times 10^{22} \times 320}{r^2}$	(1)
	r = 7.90 x 10 ⁷ (m)	(1)
	r = planet radius + distance 7 90 $\times 10^7 = 1.89 \times 10^6 + distance$	
	distance = 7.72×10^7 m	(1)
11.	$F = G \frac{m_1 m_2}{r^2}$	(1)
	$3.31 \times 10^{-2} = G \frac{8.93 \times 10^{22} \times 500}{(3 \times 10^8)^2}$	(1)
	$G = 6.67 \text{ x } 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$	
12ai)	30 - 27 = 3	(1)
	<u>The star</u> is 3 orders of magnitude larger or	(1)
	The exoplanet is 3 orders of magnitude smaller	
12aii)	$F = G \frac{m_1 m_2}{r^2}$	(1)
	$F = 6.67 \times 10^{-11} \frac{3.83 \times 10^{30} \times 5.69 \times 10^{27}}{(3.14 \times 10^{11})^2}$	(1)
	$F = 1.47 \times 10^{25} N$	(1)
12bi)	$z = \frac{V}{C}$	(1)
	$z = \frac{6.6 \times 10^3 (\text{m s}^{-1})}{3 \times 10^8 (\text{m s}^{-1})}$	(1)
	$z = 2.2 \times 10^{-5}$	(1)
	Notice how the m s ⁻¹ cancel each other out, hence why "z" has no units. Same when using wavelengths to find "z" - the metres in the numerator and denominator cancel each other out.	
12bii)	Greater than as the greater the gravitational force.	(1) (1)
13a)	$(36 \times 10^6 + 6.4 \times 10^6 =) 42.4 \times 10^6 \text{ m or } 4.24 \times 10^7 \text{ m}$	(1)
13b)	$F = G \frac{m_1 m_2}{r^2}$	(1)

	$57 = 6.67 \times 10^{-11} \frac{6 \times 10^{24} \times m_2}{(42.4 \times 10^6)^2}$	(1)
	m ₂ = 256 kg	(1)
13c)	W = mg	(1)
	57 = 256 x g	(1)
	$g = 0.223 \text{ N kg}^{-1}$	(1)
13d)	Force is the same	(1)
	Could prove by calculation:	calc.
	$F = G \frac{m_1 m_2}{r^2}$	
	$F = 6.67 \times 10^{-11} \frac{6 \times 10^{24} \times (0.25 \times 256)}{(0.5 \times 42.4 \times 10^6)^2}$	(1)
	F = 57 N	(1)
	Or	or
	a quarter of the mass results in a quarter of the force	(1)
	a half of the distance results in quadrupling the force	(1)
	(so these effects cancel each other out meaning the force is the same)	

<u>Redshift</u>

1. C 2. A 3. B

Special Relativity

1. C	2. B	3. C	4. B	5. C	6. B
7. D	8. C				

9a)	(0.83 + 1.20) - 1.80 = 0.23 m s ⁻¹	(1) (1)
	Full marks still if you just gave the correct final answer without working.	
9bi)	3×10^8 m s ⁻¹ as the speed of light is constant, no matter which frame of reference an	(1)
	observer is in.	(1)
9bii)	$I' = I \sqrt{1 - \left(\frac{V}{C}\right)^2}$	(1)
	$I' = 71 \sqrt{1 - (\frac{0.8c}{c})^2}$	c values cancel
	$I' = 71 \sqrt{1 - (0.8)^2}$	(1)
	l' = 42.6 m	(1)
9biii)	Correct - if observed in the stationary observer's reference frame.	(1) <i>any one</i>
	or	
	Incorrect - if observed in the on-board observer's reference frame.	
	Or	
	Not possible to say/could be correct and incorrect - dependant on which frame of reference it is being observed in.	
10a)	d = vt $d = (0.995 \times 3 \times 10^8) \times 2.2 \times 10^{-6}$ d = 660 m	(1) (1)

10b)	$t' = \frac{t}{\sqrt{1 - \left(\frac{V}{C}\right)^2}}$	(1)
	$t' = \frac{2.2 \times 10^{-6}}{\sqrt{1 - (0.995)^2}}$ $t' = 2.2 \times 10^{-5} \text{ m s}^{-1}$	(1) (1)
10c)	More than as the speed of the muons is now greater than before/is now closer to the speed of light. <i>Could prove by calculation but still need to state "more than".</i>	(1) (1)

