Higher Universe

Past Paper Answers

Contents

The Big Bang Theory and The Expanding Universe pg 2-3
Doppler Effect pg 3-6
Gravitational Force pg 7-11
Redshift pg 12
Special Relativity pg 12-13
Temperature of Stars pg 13

Higher Universe Answers

The Big Bang Theory and The Expanding Universe

1. E
2. D
3. C
4. B
5. E

\begin{tabular}{|c|c|c|}
\hline 6a) \& \begin{tabular}{l}
Description of what Big Bang theory is e.g. \\
The Universe was initially in a hot and very dense state and then rapidly expanded. \\
or \\
The Universe started from a point/singularity and rapidly expanded \\
One supporting factor \\
e.g. \\
abundance of hydrogen/helium \\
Cosmic Microwave Background Radiation/present temperature of Universe \\
Darkness of the sky at night/Olbers' paradox \\
Redshift of galaxies
\end{tabular} \& (1)

(1)

\hline 6b) \& | *Show teacher if possible* |
| :--- |
| Answer could include correct information on the speed of light and how it takes time to travel from distance stars and galaxies - so it is old light, showing how stars or galaxies looked years ago. This could then lead into Olbers' paradox and the fact that the night sky isn't completely full of light as light from some distant galaxies still hasn't reached us yet. Or it could relate to the fact that the light observed through a telescope may be redshifted/blueshifted depending on whether or not a galaxy is moving towards/away from Earth. Could look at redshift " z " and the equations that relate to this. Could mention the amount of redshift is based on the speed of distant galaxies, and the further away it is the faster it is travelling away from us: Hubble's Law. Could include a graph sketch of Hubble's Law or the equation $v=H_{0} d$, discussing what they show/mean. Could talk about microwave telescopes revealing Cosmic Microwave Background Radiation and how this relates to the origins of the Universe. | \& (3)

\hline 7ai) \& $$
\begin{aligned}
& X=0.016\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \\
& Y=0.024\left(\mathrm{~m} \mathrm{~s}^{-1}\right)
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \hline(1) \\
& (1)
\end{aligned}
$$
\]

\hline 7aii) \& More distant galaxies are moving away at a greater velocity/have a greater recessional velocity. \& (1)

\hline 7b) \& \[
$$
\begin{aligned}
& z=\frac{\lambda_{\text {observed }}-\lambda_{\text {rest }}}{\lambda_{\text {rest }}} \\
& z=\frac{667 \times 10^{-9}-656 \times 10^{-9}}{656 \times 10^{-9}} \\
& z=0.0168
\end{aligned}
$$

\] \& | (1) |
| :--- |
| (1) |
| (1) |

\hline
\end{tabular}

8 Ba$)$	Cosmic Microwave Background Radiation ("CMBR" alone not accepted) or Olbers' Paradox or Abundance of hydrogen and helium in the Universe or Abundance of light elements in the Universe	(1) any
8bi)	age of universe $=\frac{1}{H_{0}}$ age of universe $=\frac{1}{2 \times 10^{-17}}$ age of universe $=5 \times 10^{16}$ s age of universe $=1.59 \times 10^{9}$ (years) Must have turned final answer correctly into years for second mark.	(1)
8biiA)	Value for H_{0} is incorrect/too large/not accurate. or Incorrect line of best fit drawn. or The gradient (which is H_{0}) is too large. or New/more data is available/more accurate (compared to his 1929 data) or Not enough data at large distances. or H_{0} varies/decreases as age of the universe increases. Ho is different is not accepted. A comparison of the student's value to the real value from the data sheet is fine as this shows that the student's value is too large.	(1) any one
$8 b i i B)$	The student could draw the (correct) line of best fit or Student could use a larger sample/all of the 1929 Hubble data. or Student would use current data "draw a different line of best fit" alone is not accepted.	

Doppler Effect

1. C
2. E
3. E
4. B

5ai) The Doppler Effect

5aii)	$\begin{aligned} & f_{o}=f_{s}\left(\frac{v}{v \pm v_{s}}\right) \\ & f_{o}=510\left(\frac{340}{340-12}\right) \\ & f_{o}=529 \mathrm{~Hz} \end{aligned}$ It's fine to have written the equation with just the minus symbol in the first line of working. It's always a negative when something noisy is coming towards you.	(1) (1) (1)
5b)	$\begin{aligned} & \Delta f=\frac{2 f v_{r b c} \cos \theta}{v} \\ & 286=\frac{2 \times 3.7 \times 10^{6} \times v_{\mathrm{rbc}} \times \cos 60}{1540} \\ & v_{r b c}=0.119 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	(1) (1)
6a)	$\begin{aligned} & f_{o}=f_{s}\left(\frac{v}{v \pm v_{s}}\right) \\ & f_{o}=1020\left(\frac{340}{340-22}\right) \\ & f_{o}=1090 \mathrm{~Hz}(3 \text { significant figures }) \text { or } 1091 \mathrm{~Hz}(4 \text { s. f. }) \end{aligned}$ It's fine to have written the equation with just the minus symbol in the first line of working.	(1) (1) (1)
6b)	$\begin{aligned} & f_{o}=f_{s}\left(\frac{v}{v \pm v_{s}}\right) \\ & 1107=1020\left(\frac{340}{340-v_{s}}\right) \\ & v_{s}=26.7 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ It's fine to have written the equation with just the minus symbol in the first line of working.	(1) (1) (1)
7a)	$\begin{aligned} & f_{0}=f_{s}\left(\frac{v}{v \pm v_{s}}\right) \\ & f_{o}=200\left(\frac{340}{340+30}\right) \\ & f_{0}=184 \mathrm{~Hz} \end{aligned}$ It's fine to have written the equation with just the plus symbol in the first line of working. It's always a positive when something noisy is moving away from you.	(1) (1) (1)

7b)	It is moving away as it is redshifted/as the wavelengths appear longer. No attempt to justify means 0 marks, even if you said moving away. "must justify your answer".	(1) (1)
8a)	It is a higher frequency when approaching and a lower frequency after passing.	(1)
8b)	The wavefronts are closer together when approaching and more spaced out when moving away so more wavefronts are observed per second when approaching and less per second when moving away or by diagram (1) (1)	(1) (1)
8c)	$\begin{aligned} & f_{o}=f_{s}\left(\frac{v}{v \pm v_{s}}\right) \\ & 760=800\left(\frac{340}{340+v_{s}}\right) \\ & v_{s}=17.9 \mathrm{~ms}^{-1} \end{aligned}$ It's fine to have written the equation with just the plus symbol in the first line of working. The frequency was less, so the train must be moving away, hence why you need to use the plus symbol. If you used minus for any part of the working then you get no marks for this part.	(1) (1) (1)
9ai)	The wavefronts are closer together when approaching the alarm so more wavefronts are observed per second.	(1) (1)
9aii)	$\begin{aligned} & f_{o}=f_{s}\left(\frac{v+v_{o}}{v}\right) \\ & f_{o}=1250\left(\frac{340+25}{340}\right) \\ & f_{o}=1340 \mathrm{~Hz} \end{aligned}$ Equation was given - no mark is awarded for this.	(1) (1)
9b)	The distant star is moving away from us	(1)

	as the wavelengths appear longer (so redshifted).	(1)
10a)	$\begin{aligned} & f_{o}=f_{s}\left(\frac{v}{v \pm v_{s}}\right) \\ & f_{o}=f_{s}\left(\frac{v}{v-v_{s}}\right) \\ & \frac{f_{o}}{f_{s}}=\frac{v}{v-v_{s}} \\ & \frac{f_{s}}{f_{o}}=\frac{v-v_{s}}{v} \\ & \frac{f_{s} v}{f_{o}}=v-v_{s} \\ & \frac{f_{s} v}{f_{o}}+v_{s}=v \\ & v_{s}=v-\frac{f_{s} v}{f_{o}} \end{aligned}$ If you managed to get the correct final answer by a different method then 2 marks still awarded. Maybe better to show your teacher your working to make sure you've done it correctly.	(1) for minus flip both sides (1)
10bi)	$\begin{aligned} & f_{o}=f_{s}\left(\frac{v}{v \pm v_{s}}\right) \\ & f_{o}=294\left(\frac{340}{340-28}\right) \\ & f_{o}=320 \mathrm{~Hz} \end{aligned}$	(1) (1) (1)
10bii)	$\begin{aligned} & f_{o}=f_{s}\left(\frac{v}{v \pm v_{s}}\right) \\ & f_{0}=294\left(\frac{340}{340+28}\right) \\ & f_{0}=272 H z \end{aligned}$	(1) (1) (1)

Gravitational Force

1. B
2. E
3. C
4. A

5a)	$\begin{aligned} & F=G \frac{m_{1} m_{2}}{r^{2}} \\ & F=6.67 \times 10^{-11} \frac{6.42 \times 10^{23} \times 5.6 \times 10^{3}}{\left(3.7 \times 10^{6}+3.39 \times 10^{6}\right)^{2}} \\ & F=4770 \mathrm{~N} \end{aligned}$	(1) (1) (1)
5b)	$\begin{aligned} & \mathrm{W}=\mathrm{mg} \\ & 4770=5.6 \times 10^{3} \times \mathrm{g} \\ & \mathrm{~g}=0.852 \mathrm{~N} \mathrm{~kg}^{-1} \end{aligned}$ Gravitational force and weight are the same thing. This is important to remember as you'll need to use your F value as W when calculating gravitational field strength. An easy 3 marks if you remember this.	(1) (1) (1)
6a)	$\begin{aligned} & F=G \frac{m_{1} m_{2}}{r^{2}} \\ & F=6.67 \times 10^{-11} \frac{5.97 \times 10^{24} \times 900}{\left(400 \times 10^{3}+6370 \times 10^{3}\right)^{2}} \\ & F=7820 \mathrm{~N} \end{aligned}$	(1) (1) (1)
6b)	$\begin{aligned} & \mathrm{W}=\mathrm{mg} \\ & 7820=900 \mathrm{xg} \\ & \mathrm{~g}=8.69 \mathrm{~N} \mathrm{~kg}^{-1} \end{aligned}$	(1) (1) (1)
7a)	When in orbit the people on-board are in constant free-fall towards the planet (so appear to float). Not because there is no gravity. If there was no gravity then the satellite wouldn't stay in orbit around the planet.	(1)
7bi)	$\begin{aligned} & \mathrm{F}=\mathrm{G} \frac{\mathrm{~m}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}} \\ & \mathrm{~W}=\mathrm{mg} \\ & \mathrm{~W}=\mathrm{F} \\ & \mathrm{mg}=\mathrm{G} \frac{\mathrm{~m}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}} \\ & \mathrm{~g}=\mathrm{G} \frac{\mathrm{~m}_{1}}{\mathrm{r}^{2}} \end{aligned}$	(1) both eq. (1) or (2) if you started

	$\mathrm{m}_{1}=\frac{\mathrm{gr}^{2}}{\mathrm{G}}$ Sometimes rather than using m_{1} and m_{2}, the symbol for a bigger mass is M and for a smaller mass is m-i.e. $F=G \frac{M m}{r^{2}}$ This tends to be used in Advanced Higher Physics to distinguish two different mass values.	here
7bi)	$\begin{aligned} & \mathrm{m}_{1}=\frac{\mathrm{gr}^{2}}{\mathrm{G}} \\ & \mathrm{~m}_{1}=\frac{25 \times\left(69.9 \times 10^{6}\right)^{2}}{6.67 \times 10^{-11}} \\ & \mathrm{~m}_{1}=1.83 \times 10^{27} \mathrm{~kg} \end{aligned}$	(1) (1)
7ci)	$\begin{aligned} & F=G \frac{m_{1} m_{2}}{r^{2}} \\ & F=6.67 \times 10^{-11} \frac{1.83 \times 10^{27} \times 100}{\left(7 \times 10^{6}+69.9 \times 10^{6}\right)^{2}} \\ & F=2060 \mathrm{~N} \end{aligned}$ Answer given so no mark for this part. As this is a "show" question you must give the answer exactly as the question asks for it. 2064 N would be incorrect.	(1) (1)
7cii)	$\begin{aligned} & \text { distance/circumference }=2 \pi r \\ & \text { distance }=2 \times \pi \times\left(7 \times 10^{6}+69.9 \times 10^{6}\right) \\ & \text { distance }=4.83 \ldots \times 10^{8} \mathrm{~m} \\ & \mathrm{~d}=\mathrm{vt} \\ & 4.83 \ldots \times 10^{8}=40 \times 10^{3} \times \mathrm{t} \\ & \mathrm{t}=12100 \mathrm{~s} \end{aligned}$	(1) (1) (1) (1)

\begin{tabular}{|c|c|c|}
\hline 8a) \& \& (1)
(1) \\
\hline 8b) \& \[
\begin{aligned}
\& F=G \frac{m_{1} m_{2}}{r^{2}} \\
\& F=6.67 \times 10^{-11} \frac{5.97 \times 10^{24} \times 7.35 \times 10^{22}}{\left(6.37 \times 10^{6}+1.74 \times 10^{6}+3.84 \times 10^{8}\right)^{2}} \\
\& F=1.90 \times 10^{20} \mathrm{~N}
\end{aligned}
\] \& (1)
(1)
(1) \\
\hline 8c) \& \[
\begin{aligned}
\& \mathrm{W}=\mathrm{mg} \\
\& 1.90 \times 10^{20}=7.35 \times 10^{22} \times \mathrm{g} \\
\& \mathrm{~g}=2.59 \times 10^{-3} \mathrm{~N} \mathrm{~kg}^{-1}
\end{aligned}
\] \& \begin{tabular}{l}
(1) \\
(1) \\
(1)
\end{tabular} \\
\hline 9. \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{mg}=\mathrm{G} \frac{\mathrm{~m}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}} \\
\& \mathrm{~g}=\mathrm{G} \frac{\mathrm{~m}_{1}}{\mathrm{r}^{2}} \\
\& 3.7=6.67 \times 10^{-11} \frac{6.4 \times 10^{23}}{\mathrm{r}^{2}} \\
\& \mathrm{r}=3.4 \times 10^{6} \mathrm{~m}
\end{aligned}
\] \\
Important to remember the weight and gravitational force are the same thing. You could have done \(W=m g\) (using any value for \(m\)) then \(F=G m_{1} m_{2} / I^{2}\) (using the same \(m\) value for \(m_{2}\)) to answer this question too.
\end{tabular} \& (1)

(1)

\hline
\end{tabular}

10.	$\begin{aligned} & \mathrm{F}=\mathrm{G} \frac{\mathrm{~m}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}} \\ & 4.47 \times 10^{-2}=6.67 \times 10^{-11} \frac{1.31 \times 10^{22} \times 320}{\mathrm{r}^{2}} \\ & \mathrm{r}=7.90 \ldots \times 10^{7}(\mathrm{~m}) \\ & \mathrm{r}=\text { planet radius }+ \text { distance } \\ & 7.90 \ldots \times 10^{7}=1.89 \times 10^{6}+\text { distance } \\ & \text { distance }=7.72 \times 10^{7} \mathrm{~m} \end{aligned}$	(1) (1) (1) (1)
11.	$\begin{aligned} & \mathrm{F}=\mathrm{G} \frac{\mathrm{~m}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}} \\ & 3.31 \times 10^{-2}=G \frac{8.93 \times 10^{22} \times 500}{\left(3 \times 10^{8}\right)^{2}} \\ & G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} \end{aligned}$	(1) (1)
12ai)	$30-27=3$ The star is 3 orders of magnitude larger or The exoplanet is 3 orders of magnitude smaller	(1) (1)
12aii)	$\begin{aligned} & F=G \frac{m_{1} m_{2}}{r^{2}} \\ & F=6.67 \times 10^{-11} \frac{3.83 \times 10^{30} \times 5.69 \times 10^{27}}{\left(3.14 \times 10^{11}\right)^{2}} \\ & F=1.47 \times 10^{25} \mathrm{~N} \end{aligned}$	(1) (1) (1)
12bi)	$\begin{aligned} & z=\frac{V}{c} \\ & z=\frac{6.6 \times 10^{3}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)}{3 \times 10^{8}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)} \\ & \mathrm{z}=2.2 \times 10^{-5} \end{aligned}$ Notice how the ms^{-1} cancel each other out, hence why " z " has no units. Same when using wavelengths to find " z " - the metres in the numerator and denominator cancel each other out.	(1) (1) (1)
12bii)	Greater than as the greater the mass, the greater the gravitational force.	$\begin{aligned} & \hline(1) \\ & (1) \end{aligned}$
13a)	$\left(36 \times 10^{6}+6.4 \times 10^{6}=\right) 42.4 \times 10^{6} \mathrm{~m}$ or $4.24 \times 10^{7} \mathrm{~m}$	(1)
13b)	$F=G \frac{m_{1} m_{2}}{r^{2}}$	(1)

	$57=6.67 \times 10^{-11} \frac{6 \times 10^{24} \times \mathrm{m}_{2}}{\left(42.4 \times 10^{6}\right)^{2}}$ $\mathrm{~m}_{2}=256 \mathrm{~kg}$	$\left(\begin{array}{l}(1) \\ 13 \mathrm{c})\end{array}\right.$
$\mathrm{W}=\mathrm{mg}$ $\mathrm{g}=256 \times \mathrm{g}$ $\mathrm{g}=0.223 \mathrm{~N} \mathrm{~kg}^{-1}$	(1)	
13 d$)$	Force is the same Could prove by calculation: $\mathrm{F}=\mathrm{G} \frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}}$ $\mathrm{~F}=6.67 \times 10^{-11} \frac{6 \times 10^{24} \times(0.25 \times 256)}{\left(0.5 \times 42.4 \times 10^{6}\right)^{2}}$ $\mathrm{~F}=57 \mathrm{~N}$ or a quarter of the mass results in a quarter of the force a half of the distance results in quadrupling the force (so these effects cancel each other out meaning the force is the same)	(1)

Redshift

1. C
2. A
3. B

Special Relativity

1. C
2. B
3. C
4. B
5. C
6. B
7. D
8. C

9a)	$\begin{aligned} & (0.83+1.20)-1.80 \\ & =0.23 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ Full marks still if you just gave the correct final answer without working.	$\begin{array}{\|l\|} \hline(1) \\ (1) \end{array}$
9bi)	$3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ as the speed of light is constant, no matter which frame of reference an observer is in.	(1) (1)
9bii)	$\begin{aligned} & I^{\prime}=I \sqrt{1-\left(\frac{v}{c}\right)^{2}} \\ & I^{\prime}=71 \sqrt{1-\left(\frac{0.8 c}{c}\right)^{2}} \\ & I^{\prime}=71 \sqrt{1-(0.8)^{2}} \\ & I^{\prime}=42.6 m \end{aligned}$	(1) c values cancel (1) (1)
9biii)	Correct - if observed in the stationary observer's reference frame. or Incorrect - if observed in the on-board observer's reference frame. or Not possible to say/could be correct and incorrect - dependant on which frame of reference it is being observed in.	(1) any one
10a)	$\begin{aligned} & \mathrm{d}=\mathrm{vt} \\ & \mathrm{~d}=\left(0.995 \times 3 \times 10^{8}\right) \times 2.2 \times 10^{-6} \\ & \mathrm{~d}=660 \mathrm{~m} \end{aligned}$	(1) (1)

10b)	$\begin{aligned} & \mathrm{t}^{\prime}=\frac{\mathrm{t}}{\sqrt{1-\left(\frac{\mathrm{v}}{\mathrm{C}}\right)^{2}}} \\ & \mathrm{t}^{\prime}=\frac{2.2 \times 10^{-6}}{\sqrt{1-(0.995)^{2}}} \\ & \mathrm{t}^{\prime}=2.2 \times 10^{-5} \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	(1) (1) (1)
10c)	More than as the speed of the muons is now greater than before/is now closer to the speed of light. Could prove by calculation but still need to state "more than".	(1) (1)

Temperature of Stars

1. B
2. B
3. C
4. D

5a)	 Line added should always be above the original Peak wavelength of new line should be less than the original's	$\begin{aligned} & \text { (1) } \\ & \text { (1) } \end{aligned}$
5b)	$\begin{aligned} & 7700 \times 3.76 \times 10^{-7}=2.9 \times 10^{-3} \\ & 8500 \times 3.42 \times 10^{-7}=2.9 \times 10^{-3} \\ & 9600 \times 3.01 \times 10^{-7}=2.9 \times 10^{-3} \\ & 12000 \times 2.42 \times 10^{-7}=2.9 \times 10^{-3} \\ & \text { therefore } \\ & T \times \lambda_{\text {peak }}=2.9 \times 10^{-3} \\ & \text { or } \\ & T \times \lambda_{\text {peak }}=\text { constant } \end{aligned}$ Alternatively you could have calculated the temperatures or wavelengths using the equation, but a statement saying this proves the relationship is still needed for third mark. Could also have plotted data correctly as a graph (1), calculated the gradient (1) and given a correct statement (1).	(2) for 4 correct calculations (1) for 3 correct calcs. (0) for less than 3 calcs. (1) correct statement

