Higher Waves Past Paper Answers

Contents

pg 2-5
pg 5-9
pg 9-12
pg 12-18

Higher Waves Answers

Interference and Diffraction Gratings					
1. A	2. D	3. D	4. E	5. C	6. D
7. C	8. E	9. D	10. E	11. D	12. C
13. E	14. B	15. C			

1 metre/d = number of lines per metre number of lines per metre = 501000	(1) (1)
If the bright spots are closer together then the angle θ is smaller. Assuming m and d constant, the wavelength must therefore be smaller. <i>Could prove through a calculation to justify your statement about the wavelength being smaller.</i>	(1) (1)
A minimum is produced when waves <u>meet</u> out of phase. <i>or</i> When the trough of a wave meets the crest of another wave.	(1)
Blue light has a smaller wavelength than red light. Assuming m and d are constant, the angle θ will be smaller (so the maxima are closer together). <i>Could prove through a calculation but must be backed up by an explanation/statement.</i>	(1) (1)
$m\lambda = dsinθ$ 2 x 4.73 x 10 ⁻⁷ = 2 x 10 ⁻⁶ x sinθ θ = 28.2°	(1) (1) (1)
path difference = $(m + \frac{1}{2})\lambda$ 2.14 - 1.8 = $(0 + \frac{1}{2}) \times \lambda$ $\lambda = 0.68 \text{ m}$	(1) (1) (1)
The amplitude of the sound increases/the sound is louder as <u>destructive</u> interference is no longer occurring.	(1) (1)
	If the bright spots are closer together then the angle θ is smaller. Assuming m and d constant, the wavelength must therefore be smaller. <i>Could prove through a calculation to justify your statement about the wavelength being smaller.</i> A minimum is produced when waves <u>meet</u> out of phase. <i>or</i> When the trough of a wave meets the crest of another wave. Blue light has a smaller wavelength than red light. Assuming m and d are constant, the angle θ will be smaller (so the maxima are closer together). <i>Could prove through a calculation but must be backed up by an explanation/statement.</i> m $\lambda = dsin\theta$ $2 \times 4.73 \times 10^{-7} = 2 \times 10^{-6} \times sin\theta$ $\theta = 28.2^{\circ}$ path difference = (m + $\frac{1}{2}$) λ $\lambda = 0.68 m$ The amplitude of the sound increases/the sound is louder

19a)	That light is a wave.	(1)
	<i>or</i> That light travels as a wave.	
	<i>or</i> That energy in light is carried as a wave.	
19bi)		(1)
	2 x λ = 5 x 10 ⁻⁶ x sin(11) λ = 4.77 x 10 ⁻⁷ m	(1)
105:		(1)
19bii)	The spacing will increase as the wavelength increases (when the refractive index decreases).	(1) (1)
	<i>Could prove through a calculation but must be backed up by an explanation/statement.</i>	
20ai)	When two waves meet out of phase (a minimum occurs).	(1)
	When crests <u>meet</u> troughs.	
20aii)	path difference = $m\lambda$ path difference = 3×28	(1) (1)
	path difference = 84	(1)
	S_2 to P = 620 + 84	
	S_2 to P = 704 mm	(1)
20b)	$m\lambda = dsinθ$ m x 420 x 10 ⁻⁹ = 3.27 x 10 ⁻⁶ x sin(40)	(1) (1)
	m = 5 (so 5th order maximum above the dotted line)	(1)
	5 above + 5 below + central order maximum = $\underline{11}$	(1)
21a)	$m\lambda = dsin\theta$ 3 x 589 x 10 ⁻⁹ = 5 x 10 ⁻⁶ x sinθ	(1)
	$\theta = 20.7^{\circ}$	(1) (1)
21bi)	path difference = $m\lambda$	
	$500 - 425 = m \times 30$ m = 2.5 (so 2 + $\frac{1}{2}$)	(1)
	Destructive interference	(1)
	No attempt to justify by calculation means 0 marks, even if you said	
	<i>destructive interference</i> " must justify your answer by calculation".	
21bii)	The strength of the signal increases as (destructive) interference is no longer occurring.	(1) (1)
	<i>No attempt to explain means 0 marks, even if you said it increases.</i> " must explain your answer".	

22a)	Coherent waves have a constant phase relationship (and have the same frequency, wavelength and speed).	(1)
22b)	A maximum is produced when two waves <u>meet</u> in phase.	(1)
	or when waves <u>meet</u> peak to peak. or	
	when waves meet trough to trough.	
22c)	path difference = m λ 282 - 204 = 2 x λ λ = 39 mm	(1) (1) (1)
22d)	The path difference stays the same as the wavelength is still the same. <i>Could prove through a calculation but must be backed up by an</i> <i>explanation/statement.</i>	(1) (1)
23a)	A maximum is formed when two waves <u>meet</u> in phase. <i>or</i> when waves <u>meet</u> peak to peak. <i>or</i> when waves <u>meet</u> trough to trough.	(1)
23bi)	Pick a point <u>on</u> the line of best fit, e.g. $\sin \theta = 0.30$ so $1/d = 0.62 \times 10^6$	
	$1/d = 0.62 \times 10^{6}$ d = 1/(0.62 × 10 ⁶)	
	$m\lambda = dsin\theta$ $1 \ge \lambda = 1/(0.62 \ge 10^6) \ge 0.30$ $\lambda = 4.8 \ge 10^{-7} m$	(1) (1) (1)
23bii)	$ \begin{split} m\lambda &= dsin\theta \\ 1 \times 4.8 \times 10^{-7} &= 2 \times 10^{-6} \times sin\theta \\ \theta &= 13.9^{\circ} \\ or \\ 1/d &= 1/(2 \times 10^{-6}) \\ 1/d &= 500000 \\ 1/d &= 0.5 \times 10^{6} \end{split} $	(1) (1) (1) <i>or</i>
	$f/d = 0.5 \times 10^{\circ}$ on the line of best fit for this graph this gives sin θ as 0.24 sin θ = 0.24 (from graph) θ = 13.9°	(1) (1) (1)
23c)	 Any two correct answers from: Repeat measurements Use additional gratings Move screen further away Use second order maxima to determine θ Measure angle from first order to first order 	(2)

24ai)	Bright spots are produces when waves <u>meet</u> in phase. <i>or</i> when waves <u>meet</u> peak to peak.	(1)
	or when waves <u>meet</u> trough to trough.	
24aii)	$m\lambda = dsin\theta$ 3 x 630 x 10 ⁻⁹ = (1 x 10 ⁻³)/250 x sinθ $\theta = 28.2^{\circ}$	(1) (1) (1)
	250 lines per millimetre means the grating spacing will be 1 mm divided by 250 lines, so $1 \times 10^{-3}/250$.	
24aiii)	If the grating spacing decreases (1 x $10^{-3}/600$) then the angle θ will increase.	(1) (1)
	Could prove through a calculation to justify your statement about the angle θ increasing.	
24b)	The note has vertical and horizontal lines <i>or</i> <u>crossed</u> lines/grating/grid <i>or</i> mesh	(1)
25a)	Blue light has the shortest wavelength so the angle θ will be the smallest. <i>Could prove through a calculation but would need to state which colour of</i> <i>light at the end. You'd also need to use appropriate wavelengths (i.e.</i> <i>found on your data sheet).</i>	(1) (1) (1)
25bi)	$m\lambda = dsinθ$ 1 x λ= 3.3 x 10 ⁻⁶ x sin(8.9) λ = 5.11 x 10 ⁻⁷ m (so 511 x 10 ⁻⁹ or 511 nm)	(1) (1) (1)
25bii)	Green (use data sheet)	(1)
25biii)	(If d is greater then) angle θ will be smaller. Smaller angles are more difficult to measure accurately.	(1) (1)

Irradiance

1. B	2. B	3. D	4. D	5. A	6. C
7. A	8. A	9. D			

10a)	$A = \pi r^2$	
	$A = \pi \times (5 \times 10^{-4})^2$	
	$A = 7.85 \times 10^{-7}$	(1)
	I = P/A	(1)
	$1020 = P/7.85 \times 10^{-7}$	(1)
	$P = 8.01 \times 10^{-4} W$	(1)
10b)	The radius will be the same size	(1)
	as light from the laser beam won't diverge/spread out.	(1)
	<i>No attempt to justify means 0 marks, even if you said it stays the same.</i> " must justify your answer".	
11a)	Irradiance is the power per unit area.	(1)
	Irradiance is the power per m ² .	
11b)	$I = k/d^2$	(1) equation
	$675 = k/0.2^2$ $302 = k/0.3^2$	(1) and (4)
	k = 27 k = 27	(1) ans x4
	$170 = k/0.4^2$ $108 = k/0.5^2$	
	k = 27 k = 27	
	$I \times d^2 = constant$	(1)
	Must use all the data to get all three marks.	statement
	Could also plot a graph of I vs $1/d^2$ with the line of best fit passing	
	through the origin:1 mark for accurate points, 1 mark for axis titles (units	
	not needed), 1 mark for statement.	
11c)	To reduce/prevent reflections from the bench.	(1)
-	Or	
	To absorb light.	
11d)	The same reading	(1)
	as light from the laser beam won't diverge/spread out.	(1)
12a)	(20 mV means 1 mW so)	
,	40 mV means 2 mW	(1)
	I = P/A	(1)
	$I = 2 \times 10^{-3}/8 \times 10^{-5}$	(1)
	$I = 25 W m^{-2}$	(1)
12b)	$I = k/d^2$	(1) equation
/	$675 = k/0.2^2$ $302 = k/0.3^2$	()
	k = 27 k = 27	(1) ans x3
	170 = k/0.4 ² P.T.O	

	k = 27	
	$I \ge d^2 = constant$	(1)
	Must use all the data to get all three marks. Could also plot a graph of I vs $1/d^2$ with the line of best fit passing through the origin:1 mark for accurate points, 1 mark for axis titles (units not needed), 1 mark for statement.	statement
13a)	It has a high irradiance as the area/radius of the beam is small.	(1)
13b)	E = hf E = 6.63 x 10 ⁻³⁴ x 4.74 x 10 ¹⁴ E = 3.14 x 10 ⁻¹⁹ J	(1) (1) (1)
13c)	$v = f\lambda$ 3 x 10 ⁸ = 4.74 x 10 ¹⁴ x λ λ = 6.32 x 10 ⁻⁷ m mλ = dsinθ	 (1) both eq. (1), (1) sub. (1) final ans.
	$2 \times 6.32 \times 10^{-7} = d \times sin(30)$ $d = 2.53 \times 10^{-6} m$	
14a)	As the graph shows a straight line through the origin	(1)
14b)	I = k/d²I = k/d²4 = k/1.6²I = 10.24/0.4²k = 10.24I = 64 W m²	 (1) equation (1) all sub. (1) final ans.
	Using $I_1 d_1^2 = I_2 d_2^2$ is also an acceptable method of finding the answer.	
14c)	irradiance / W m ⁻² 0 0 1 d^2 / m ⁻²	
	straight line which is parallel to the other one, but higher than it (doesn't pass through the origin)	(1)
15a)	$I = k/d^{2}$ 242 = k/0.1 ² 106 = k/0.15 ² k = 2.4	(1) equation
	k = 2.4k = 2.4 $60 = k/0.2^2$ $39 = k/0.25^2$ P.T.O	(1) ans x4

	k = 2.4 k = 2.4	
	I x d^2 = constant, so it behaves like a point source. <i>Must use</i> all <i>the data to get all three marks.</i> <i>Could also plot a graph of I vs 1/d² with the line of best fit passing</i> <i>through the origin:1 mark for accurate points, 1 mark for axis titles (</i> <i>not needed), 1 mark for statement.</i>	(1) statement <i>Cunits</i>
15bi)		(1)
15bii)	$v = f\lambda$ 3 x 10 ⁸ = f x 633 x 10 ⁻⁹ f = 4.73 x 10 ¹⁴ Hz E = hf E = 6.63 x 10 ⁻³⁴ x 4.73 x 10 ¹⁴ E = <u>3.14 x 10⁻¹⁹ J</u>	(1) both eq. (1), (1) sub. (1) final ans.
15biii)	$P = E/t$ $1 \times 10^{-4} = E/5$ $E = 5 \times 10^{-4} \text{ J}$ No. of photons = Total energy/energy of one photon No. of photons = 5 × 10^{-4}/3.14 × 10^{-19} No. of photons = 1.59 × 10 ¹⁵ (photons)	(1) (1) (1) (1)
15biv)	Coherent waves have a constant phase relationship (and have the sa frequency, wavelength and speed).	ame (1)
16a)	Irradiance is the power per unit area. <i>or</i> Irradiance is the power per m ² .	(1)
16b)	$134 = k/0.2^2$ $60.5 = k/0.3^2$ $k = 5.4$ $k = 5.4$ $33.6 = k/0.4^2$ $21.8 = k/0.5^2$ $k = 5.4$ $k = 5.5$ I x d² = constantMust use all the data to get all three marks.Could also plot a graph of I vs $1/d^2$ with the line of best fit passing through the origin:1 mark for accurate points, 1 mark for axis titles ((1) equation (1) ans x4 (1) statement
	not needed), 1 mark for statement.	

16c)	$I = k/d^{2}$ $I = 5.4/0.6^{2}$ $I = 15 \text{ W m}^{-2}$ Using $I_{1}d_{1}^{2} = I_{2}d_{2}^{-2}$ is also an acceptable method of finding the answer (which should be the same as or very similar to 15 W m ⁻²)	(1) (1) (1)
16d)	Use a smaller lamp as this will act more like a point source. <i>or</i> Put a black cloth on the table/bench as this will reduce reflections/absorb light.	(1) (1) <i>or</i> (1) (1)

Line Spectra

1. C	2. E	3. D	4. C	5. E	6. B
7. B	8. A	9. D	10. A		

11a)	6	(1)
11b)	$Q_3 to Q_2$	(1)
	Q_3 - Q_2 is incorrect. Must use "to" or " \rightarrow " i.e. Q_3 to Q_2 or $Q_3 \rightarrow Q_2$	
11c)	(Shortest wavelength means highest frequency so highest energy/energy transition so P_2 to P_0 .)	
	$E_2 - E_1 = hf$ -2.4 x 10 ⁻¹⁹ - (-21.8 x 10 ⁻¹⁹) = 6.63 X 10 ⁻³⁴ x f f = 2.92 x 10 ¹⁵ Hz	(1) both eq. (1), (1) sub. (1) final ans.
	v = fλ 3 x 10 ⁸ = 2.92 x 10 ¹⁵ x λ λ = <u>1.03 x 10⁻⁷ m</u>	
11d)	Energy gap is the same size so frequency/wavelength is the same.	(1)
12a)	E_0 to E_3 (<i>the other way around is incorrect</i>) or $E_0 \rightarrow E_3$	(1)
12b)	$E_2 - E_1 = hf$ -1.36 x 10 ⁻¹⁹ - (-5.42 x 10 ⁻¹⁹) = 6.63 X 10 ⁻³⁴ x f f = 6.12 x 10 ¹⁴ Hz	(1) (1) (1)
13a)	Any two correct answers:	(2)
	- A positively charged nucleus.	

	 Electrons are in (discrete) energy levels/shells. When an electron moves from one stat to another, the energy lost or gained is done so only in very specific amounts of energy. Each line in a spectrum is produced when an electron moves from one energy level/orbit/shell to another. 	
13b)	$ \begin{array}{l} {\sf E}_2 - {\sf E}_1 = {\sf hf} \\ {\sf -1.36 \ x \ 10^{-19}} - ({\sf -5.45 \ x \ 10^{-19}}) = 6.63 \ {\sf X} \ 10^{-34} \ {\sf x} \ {\sf f} \\ {\sf f} = 6.17 \ {\sf x} \ 10^{14} \ {\sf Hz} \end{array} $	(1) (1) (1)
13c)	$z = (\lambda_{o} - \lambda_{r})/\lambda_{r}$ z = (661 - 656)/656 $z = 7.62 \times 10^{-3}$	(1) (1)
	z = v/c 7.62 x 10 ⁻³ = v/3 x 10 ⁸ v = 2.29 x 10 ⁶ m s ⁻¹	(1) (1) (1)
14ai)	E_3 to E_0 as the shortest wavelength will have the highest frequency, therefore the highest energy/energy level transition.	(1) (1)
14aii)	$\begin{array}{l} E_2 - E_1 = hf \\ \textbf{-5.2 x 10^{-19}} - (\textbf{-9 x 10^{-19}}) = 6.63 \ X \ 10^{-34} \ x \ f \\ f = 5.73 \ x \ 10^{14} \ Hz \end{array}$	(1) (1) (1)
14b)	$ \frac{\text{In the air}}{v = f\lambda} 3 x 10^8 = 4.6 x 10^{14} x \lambda \lambda = 6.52 x 10^{-7} $	 (1) both eq. (1), (1) sub. (1) final ans.
	$\frac{\text{In the glass}}{\lambda_1 / \lambda_2} = \frac{\sin \theta_1 / \sin \theta_2}{\sin \theta_2 / \sin \theta_2}$ 6.52 x 10 ⁻⁷ / λ_2 = sin(53)/sin(30) $\lambda_2 = \frac{4.08 \times 10^{-7} \text{ m}}{10^{-7} \text{ m}}$	
15a)	v = f λ 3 x 10 ⁸ = f x 656.28 x 10 ⁻⁹ f = 4.57 x 10 ¹⁴ Hz	(1) "f" value
	$\begin{array}{l} {\sf E}_2 \ - \ {\sf E}_1 \ = \ hf \\ {\sf E}_2 \ - \ {\sf E}_1 \ = \ 6.63 \ X \ 10^{-34} \ x \ 4.57 \ x \ 10^{14} \\ {\sf E}_2 \ - \ {\sf E}_1 \ = \ 3.03 \ x \ 10^{-19} \ J \end{array}$	(1) equation (1) sub.
	E_3 to E_2 produces the hydrogen alpha line.	(1) statement
15bi)	(Period of time for one wave cycle e.g. peak to peak) 12 days	(1)

15bii)	$z = (\lambda_0 - \lambda_r)/\lambda_r$ z = (656.41 - 656.28)/656.28 $z = 1.98 \times 10^{-4}$	(1) (1)
	z = v/c 1.98 x 10 ⁻⁴ = v/3 x 10 ⁸ v = 5.94 x 10 ⁴ m s ⁻¹	(1) (1) (1)
15biii)	The blueshift is less than the redshift so the approach velocity is smaller.	(1) (1)
	Could prove by calculation but needs to be backed up with a statement about the approach velocity being smaller.	
16a)	Photons of particular energy/frequency are absorbed in the Sun's atmosphere/outer layers	(1) (1)
16bi)	Light is redshifted/shifted towards the red as the galaxies are moving away.	(1) (1)
16bii)	$z = (\lambda_o - \lambda_r)/\lambda_r$ $z = (450 \times 10^{-9} - 410 \times 10^{-9})/410 \times 10^{-9}$ z = 0.098	(1) (1)
	"Show" question means you've already been given the answer – no mark for this part.	
16biii)	z = v/c $0.098 = v/3 \times 10^8$ $v = 2.94 \times 10^7 \text{ m s}^{-1}$	(1) (1)
	$v = H_0 d$ 2.94 x 10 ⁷ = 2.3 x 10 ⁻¹⁸ x d d = 1.3 x 10 ²⁵ m	(1) (1) (1)
17ai)	$\begin{array}{l} {\sf E}_2 - {\sf E}_1 = {\sf hf} \\ -2.976 \ {\sf x} \ 10^{-18} \ - (-3.29 \ {\sf x} \ 10^{-18}) = 6.63 \ {\sf X} \ 10^{-34} \ {\sf x} \ {\sf f} \\ {\sf f} = 4.73 \ {\sf x} \ 10^{14} \ {\sf Hz} \end{array}$	(1) both eq.(1), (1) sub.(1) final ans.
	v = fλ 3 x 10 ⁸ = 4.73 x 10 ¹⁴ x λ λ = <u>6.33 x 10⁻⁷ m</u>	
17aii)	$A = \pi r^{2} A = \pi x (4 \times 10^{-4})^{2}$	(1)
	I = P/A 9950 = P/($\pi \times (4 \times 10^{-4})^2$) P = 5 x 10 ⁻³ W	(1) (1) (1)
17b)	Measure values of irradiance for different distances Plot a graph of I against 1/d ² Graph of I against 1/d ² is a straight line <u>through the origin</u> P.T.O	(1) (1) (1)

	<i>or</i> Measure values of irradiance for different distances Determine I x d ² Values of I x d ² are constant (verifying the inverse square law of light)					or (1) (1) (1)	
	Refraction						
	1. C	2. C	3. C	4. D	5. A	6. A	
	7. B	8. A	9. D	10. C	11. E	12. B	
	13. E	14. D	15. B	16. B	17. A	18. E	
	19. D	20. E	21. D	22. C			
23a)	$m\lambda = dsin\theta$ 2 x 486 x 10 $\theta = 26.7^{\circ}$) ⁻⁹ = 2.16 x 1	.0 ⁻⁶ x sinθ				(1) (1) (1)
23bi)	$n = sin\theta_1/sir$ n = sin47/sir n = 1.61						(1) (1)
	"Show" ques for this part.		you've already	r been given t	the answer –	no mark	
23bii)	$\begin{array}{l} n = 1/sin\theta_c\\ 1.61 = 1/sin\\ \theta_c = 38^{\circ} \end{array}$	θς					(1)
	As 63° > 38°	° then the ra	y will totally in	ternally reflee	ct at point X .		(1)
	No attempt to justify by calculation means 0 marks, even if you said it the ray will totally internally reflect. " must justify your answer by calculation".						
24a)	$n = sin\theta_1/sin\theta_2$ n = sin20/sin13 n = 1.52					(1) (1)	
	"Show" question means you've already been given the answer – no mark for this part.						
24b)	When the angle of incidence is equal to the critical angle, the angle of refraction is equal to 90°.					(1)	
24c)	$ \begin{array}{l} n = 1/sin\theta_c \\ 1.52 = 1/sin\theta_c \\ \theta_c = 41^{\circ} \end{array} $					(1) (1) (1)	

24d)	60° 20° 77° 13° 47° 47° 13° 60° 20° 20°	
	Total Internal Reflection 47º Refraction <u>away</u> from the normal on exit 13º + 20º	(1) (1) (1) (1)
25ai)	$n = sin\theta_1/sin\theta_2$ n = sin(82)/sin(45) n = 1.4	(1) (1) (1)
25aii)	The angle of refraction will be greater than 82° as if the refractive index n is greater and $\sin\theta_2$ (sin45) is constant then $\sin\theta_1$ must be greater (n = $\sin\theta_1/\sin\theta_2$) so θ_1 is greater.	(1) (1)
	Could prove through a calculation but would need to be backed up with a statement and explanation.	
25b)	$\label{eq:n} \begin{split} n &= 1/sin\theta_c\\ 1.44 &= 1/sin\theta_c\\ \theta_c &= 44^{\circ}\\ \end{split}$ As 45° > 44° then the ray will totally internally reflect at the surface.	(1) (1)
	No attempt to justify by calculation means 0 marks, even if you said it the ray will totally internally reflect. " must justify your answer by calculation".	
26ai)	$n = sin\theta_1/sin\theta_2$ n = sin(47)/sin(29) n = 1.51	(1) (1) (1)

26aii)	$n = 1/\sin\theta_c$	(1)
,	$1.51 = 1/\sin\theta_c$	(1)
	$\theta_{c} = 41^{\circ}$	(1)
26aiii)	normal 61° 59° 51° red light 60° 60° glass prism	
	<i>Refraction out of the prism 31º 51º</i> Arrow on ray	(1) (1) (1) (1)
26bi)	A bright fringe/maximum is produced when two waves meet in phase.	(1)
	<i>or</i> when two waves <u>meet</u> peak to peak. <i>or</i> when two waves <u>meet</u> trough to trough.	
26bii)	$m\lambda = dsin\theta$ $2 \times 650 \times 10^{-9} = (1 \times 10^{-3})/300 \times sin\theta$ $\theta = 23^{\circ}$ 300 lines per millimetre means the grating spacing will be 1 mm divided	(1) (1) (1)
	by 300 lines, so 1 x 10 ⁻³ /300.	
26biii)	as the wavelength is now smaller (blue light has a smaller wavelength than red). <i>Could prove through a calculation to justify your statement about the</i>	(1) (1)
	angle θ being smaller.	
27a)	$n = \sin\theta_1/\sin\theta_2$ $1.5 = \sin(50)/\sin\theta_2$ $\theta_2 = 31^{\circ}$	(1) (1) (1)
27b)	$n = \lambda_1 / \lambda_2$ 1.5 = $\lambda_1 / 420 \times 10^{-9}$ $\lambda_1 = 6.3 \times 10^{-7}$ m (or 630 nm)	(1) (1) (1)

	angle will be smaller.	(1)
30b)	No, it won't refract (it will totally internally reflect) as blue light has a higher refractive index than red light so the critical	(1)
	If you put a normal on the surface where angle X is then the angle of incidence would be the critical angle, 37° , so angle X is 37° + the angle of reflection, which is also 37° .	
30aiiB)	74°	(1)
30aiiA)	$n = 1/\sin\theta_c$ $1.66 = 1/\sin\theta_c$ $\theta_c = 37^{\circ}$	(1) (1) (1)
30ai)	$n = \sin\theta_1/\sin\theta_2$ $1.66 = \sin(40)/\sin\theta_2$ $\theta_2 = 23^{\circ}$	(1) (1) (1)
	Less than as shorter wavelengths refract more/have a larger refractive index.	(1) (1)
29c)	$n = 1/\sin\theta_c$ $1.32 = 1/\sin\theta_c$ $\theta_c = 49^{\circ}$	(1) (1) (1)
29b)	$n = sin\theta_1/sin\theta_2$ n = sin(60)/sin(41) n = 1.32	(1) (1) (1)
29a)	It remains unchanged/constant.	(1)
28b)	X as blue light is refracted more (by glass compared to red light).	(1) (1)
	$ \frac{\text{In the glass}}{n = \lambda_1 / \lambda_2} \\ 1.61 = 6.25 \times 10^{-7} / \lambda_2 \\ \lambda_2 = 3.88 \times 10^{-7} \text{ m} $	
28aii)	$ \frac{\text{In the air}}{v = f\lambda} 3 x 10^8 = 4.8 x 10^{14} x \lambda \lambda = 6.25 x 10^{-7} $	(1) both eq.(1), (1) sub.(1) final ans.
28ai)	$n = \sin\theta_1/\sin\theta_2$ $1.61 = \sin(28)/\sin\theta_2$ $\theta_2 = 17^{\circ}$	(1) (1) (1)
27c)	The angle of refraction θ inside the glass will be lesser as blue light is refracted by a prism more than red light. <i>or</i> as the refractive index of blue light is more than that of red light.	(1) (1) <i>or</i> (1)

		(4)
31a)	$n = \sin\theta_1 / \sin\theta_2$ 1.33 = sin\theta_1 / sin(36)	(1) (1)
	$\theta_1 = 51^{\circ}$	(1)
31bi)	The angle of refraction equals 90°.	(1)
31bii)	$n = 1/\sin\theta_c$ 1.33 = $1/\sin\theta_c$	(1) (1)
	$\theta_c = 49^{\circ}$	(1)
31c)		
	Totally internally reflected ray	(1)
32a)	•	(1)
	$1.49 = \sin\theta_1 / \sin(19)$ $\theta_1 = 29^{\circ}$	(1) (1)
32b)		(1)
	$1.49 = 1/\sin\theta_c$ $\theta_c = 42^{\circ}$	(1) (1)
32c)	Different frequencies/colours are refracted through different angles.	(1)
	<i>or</i> The refractive index is different for different frequencies/colours.	
33a)	$n = sin\theta_1/sin\theta_2$ 1.615 = sin $\theta_1/sin(38)$	(1) (1)
	$\theta_1 = 84^{\circ}$	(1) (1)
	Find the refractive index from the graph when the wavelength is 660 nm.	
33b)	The speed in the prism will be less as shorter wavelength light will have a higher refractive index.	(1) (1)
	Could prove through a calculation to justify your statement about the speed being less ($n = v_1/v_2$).	
34ai)	Different frequencies/colours are refracted through different angles. or	(1)
	The refractive index is different for different frequencies/colours.	
34aii)	•	(1)
	$1.54 = 3 \times 10^8 / v_2$ $v_2 = 1.95 \times 10^8 \text{ m s}^{-1}$	(1) (1)
L	1	

34bi)	$v = f\lambda$ 3 x 10 ⁸ = 4.57 x 10 ¹⁴ x λ λ = 6.56 x 10 ⁻⁷ m mλ = dsinθ	 (1) both eq. (1), (1) sub. (1) final ans.
	$2 \times 6.56 \times 10^{-7} = d \times sin(19)$ d = 4.03 x 10 ⁻⁶ m	
34bii)	Blue light has a smaller wavelength than red light. As $m\lambda = dsin\theta$, (and m and d are constant) this means the angle between the 2nd order maximum and the central maximum will be smaller.	(1) (1)
35a)	The ratio of the speed of light in a vacuum to the speed of light in a medium.	(1)
35b)	$n = sin\theta_1/sin\theta_2$ n = sin(36)/sin(18) n = 1.9	(1) (1) (1)
35c)	$n = 1/\sin\theta_c$ $1.9 = 1/\sin\theta_c$ $\theta_c = 32^{\circ}$	(1) (1) (1)
36a)	n = sinθ ₁ /sinθ ₂ n = sin(45)/sin(22) n = 1.89 "Show" question means you've already been given the answer – no mark for this part.	(1) (1)
36bi)	When the angle of incidence is equal to the critical angle, the angle of refraction is equal to 90°.	(1)
36bii)	$n = 1/\sin\theta_{c}$ $1.89 = 1/\sin\theta_{c}$ $\theta_{c} = 32^{\circ}$	(1) (1) (1)

36biii)	air 45° 68° 22° 38° 22° 60° 60° 45° 45° 68° 45° 68° 22° 38° 60° 60° 45° 45° 45° 45° 45° 45° 45° 45	
	Total Internal Reflection 38° Refraction <u>away</u> from the normal on exit 22° + 45°	(1) (1) (1) (1)
37a)	$n = \sin\theta_1/\sin\theta_2$ 2.42 = sin(49)/sin θ_2 $\theta_2 = 18^{\circ}$	(1) (1) (1)
37b)	$n = 1/\sin\theta_c$ $2.42 = 1/\sin\theta_c$ $\theta_c = 24^{\circ}$	(1) (1) (1)
37c)	More as the critical angle for moissanite will be smaller (due to greater refractive index) meaning more light will be totally internally reflected.	(1) (1) (1)